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LETI'ER TO THE EDITOR 

Squeezing of light within the framework of the population 
theoretic approach 

S K Srinivasan 
Department of Mathematics, Indian Institute of Technology, Madras 600 036, India 

Received 10 October 1989 

Abstract. This letter proposes a population point process model of cavity radiation in 
which the process of spontaneous emission evolves as a multiphase birth process. The 
heterogeneity arising from the emissions in different phases lends itself to an interpretation 
of superposition of photons in different streams. Squeezing is shown to be a natural 
consequence of the heterophase evolution. 

The object of this letter is to establish the squeezing of light within the framework of 
the population theoretic approach to cavity radiation and detection. The earliest 
attempt to describe fluctuation in amplification of quanta was by Shimoda et a1 [ l ]  
who used the population growth model as the basis for the evolution of photon 
population; the parameters of the population evolution were then used to interpret 
physical characteristics like amplification, attenuation and thermal equilibrium. This 
was followed by Shepherd and Jakeman [2-41 who incorporated effects due to inter- 
action between the resulting radiation (field) and the detector. In particular Shepherd 
[ 2 ]  characterised the population process as a Markov process with constant evolution 
parameters and identified the Gaussian-Lorentzian nature of the resulting thermal 
field. Recently non-Markov population evolution models have been proposed by 
Srinivasan et a1 [5-81 to establish the viability of the population theoretic approach 
in general and to confirm that the theory is able to bring out, on the one hand, diverse 
features such as the non-Lorentzian nature of the spectrum of the resulting field and, 
on the other, non-classical features such as antibunching observed in typical resonant 
fluorescence. More recently Srinivasan and Sridharan [9] have proposed a multiphase 
evolution of population in which the state process governing spontaneous emission is 
modelled as a semi-Markov process which in turn makes the resulting field correspond 
to the photons from a stream, obtained by amplitude mixing of the most general type, 
of coherent and chaotic beams. In the present letter we proceed further on these lines 
and establish that squeezing (see for example [lo]) can also be accommodated within 
the framework of population theory. This should not cause any surprise inasmuch as 
particle (field) characteristics of light, including the statistics, are incorporated in a 
typical population theory. 

It is convenient to use the Shepherd model [ 2 ]  as adapted by Srinivasan [8] as the 
starting point; the photon field is modelled as a discrete-valued population process, 
the field evolving in cavity as a birth (stimulated emission), death (absorption) and 
immigration (spontaneous emission). The field detector interaction is modelled as an 
emigration process with a constant rate 7 per individual (photon). Likewise the death 
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(cavity absorption) rate is assumed to be a constant; however, the emission rates are 
not constants and are specified as follows. The process of spontaneous emissions, 
taken in isolation, is governed by a semi-Markov process { Z ( t ) }  over a finite set of 
elements 1 , 2 , .  . . , rn with constant rates p, of transition, non-vanishing only for 
transition of the type i + i +  1 ( i  = 1,2,  . . . , m - l ) ,  m -+ i ( i  = 1 , 2 , .  . . , m); the spon- 
taneous emission of a photon occurs when Z( t )  makes a transition from state m. We 
use the index i to characterise the photon thus emitted. Likewise the process of 
stimulated emission due to any particular photon (of index i )  is taken to be a general 
point process of emissions in which the time to the first emission is the sum of ( n  + 1 )  
positive independent random variables each with a negative exponential distribution 
with parameter A: ( j  = 1 , 2 , .  . . , n + l ) ,  with subsequent emissions occurring at a rate 
a, = A : + I .  Thus each of the photons of type i is assumed to evolve in time, independent 
of each other, through a series of phases, the sojourn through the first n phases being 
completed before the actual emission, the rate of emission itself being a constant a,. 
The emitted photons carry the same index i and in return repeat the process independent 
of other photons. The (cavity) absorption rate is assumed to be a constant equal to 
p for all types i and all the phases except the last where it is taken to be equal to 
AY + p ;  the particular differential choice is made to facilitate thermal equilibrium 
whenever it is needed. As emphasised elsewhere [6], the evolution through phases is 
only a simple device to handle non-Markov emission processes which are otherwise 
intractable. The particular case when m = 1 was dealt with earlier [7] and led to a 
thermal stream of photons. To proceed further, we use t as the time parameter and 
introduce the following notation: 

X I (  t ) :  the size of the population of photons of index i ( i  = 1 , 2 , .  . . , m) 
X ( t ) :  the total size of the photon population 
Z ( t ) :  the state process of spontaneous emission taking values over the index set 

X { ( t ) :  the size of the population of photons of index i and phase j ( j  = 1 , 2 , .  . . , n ;  

g,( w, t ) :  conditional generating function of photons defined to be equal to 

1 , 2 , .  . . , m 

i = 1 , 2 , .  . . , m) 

E [ wxi(')  I X ( 0 )  = X:(O) = 1, Pk = 0, k = 1,2,  . . . , m] 
i = l , 2  ,..., m ; j = 1 , 2  ,..., n ( 1 )  

G l ( w l ,  w 2 , .  . . , w,, t ) :  generating function of photons of different indices denoted 
for brevity by G , ( t )  where 

G , ( t ) = E [ w ~ ~ ( ' ) w ; " ' ) .  . .  W ~ ~ ~ ~ ( ' ) ~ X ( O )  =o, z(o)= i ]  

i = 1,2,  . . . , m (2) 

where E stands for the mathematical expectation of the quantity within the brackets. 
The special conditioning introduced for g,( w, t )  renders the contributing process 
immigration taboo and facilitates the solution (see for example Ell]); it is also to be 
noted that g,(w, t )  is independent of i since the population evolution parameters for 
the sub-process are independent of i. We note that the exponential nature of the 
distribution of the lifespan of the phases leads to 

-- agJ(w' 'I - - (Aj  + p + r ] )g j (  w, t )  + Ajgj+,( w, t )  + p + r] 
at  

j = 1,2,  . . . , r] - 1 (3)  
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with the initial condition 

gi(w,  0) = w j = l , 2  ,..., n. ( 5 )  

On the other hand if we examine the process { Z ( t ) }  we find that the generating 
functions Gi( t )  satisfy the following set of equations: 

i = 1,2 ,  . . . , 

with the initial conditions 

G i ( 0 )  = 1 i = 1,2,  . . . , m 

m - 1  ( 6 )  

where Pm is given by 

Pm = V I  + U2 + . . . + U,. (9) 

Although the above set of equations is not capable of being solved explicitly, the 
moment structure can be readily deduced. In fact the moment structure of equations 
(3)  and (4) subject to initial condition ( 5 )  is readily available in [7]. 

At the outset we note that all that we need for our discussion is contained in the 
first two moments of the steady state photon population. Introducing the notation 

t We use * as a superscript to denote the Laplace transform. 
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(iii) m =3. 

Ai(s) = P ~ P ~ P ~ / [ s ( ~ + P  + T)D(s)I 

A2(s) = Ai(s)(s+Pi) /Pi  

D ( s )  = s2+ S ( Y I  +P1 + P 2 )  + Y I ( P I  + P 2 )  +PIP2 

B T , ( S ) = P , P ~ . ~ { ~ , ~ T ( ~ ) +  vj[Aj(p+ T)+Ai(p + T ) I / P ~ } / ~ D ( S )  

Bii = Bkii(m) = PlP2vi{bT(O)+2viAi(~ + T ) / P ~ I / ~ ( O ) *  

Ads)  = A2(S)(S + P 2 ) / P 2  

(16) 

(17) 

(18) 

Now we are comfortably placed to draw many useful conclusions. Confining our 
attention to the case m = 2, we first set A = 0 so as to render the resulting radiation 
close to a coherent beam of light. If  we further set vI = 0, the resulting population of 
photons is indeed coherent (Poisson); on the other hand if we set v2 = 0, the resulting 
radiation is antibunched with the bunching factor ( P ,  + v l ) / ( p  + 17 + P ,  + vl). Return- 
ing to the general case when neither v 1  nor v2 is zero and setting v 1  = LP, , p + 77 = KP,  
and v2 = MP, , we note that the steady state population of photons forms two streams 
with 

E [  X,(a) ]  = Ai,(m) = L / K (  L +  1 )  

E [  X2(a)]  = Ai2(m) = M /  K (  L + 1)  

E [  x , ( a ) {  x , ( m )  - I}] = = L ~ / K ~ (  L +  I ) ( K  + L +  1 )  

E[X2(m){X2(a)- 1}]= B22=(K + 1)M2/K2(L+ 1)(K + L +  1 )  

Hence we infer that the stream corresponding to X, is squeezed inasmuch as all  < 1 
and 322 > 1 for all possible choices of L, K > 0. It is interesting to note that the amount 
of antibunching for stream 1 is independent of M. If we choose M = 1 ,  it is indeed 
possible to prove that the total population enjoys a Poisson distribution; thus we 
conclude that the resulting stream corresponds to coherent light. 

To interpret the result, we note that in the population theoretic approach, a light 
beam is conceived of as an assembly of photons whose evolution is the only characteris- 
tic that is available for identification of the diverse properties of the beam. In this 
connection it is pertinent to note that the phase characteristics of light propagation 
can be brought out [ 121 by the third-order correlation of counting statistics; more 
recently [9] the second-order characteristics of counting statistics of amplitude mixture 
of chaotic light beams were extracted from the multiphase evolution of the population 
of photons. To make connection to squeezed light, we note that in the population 
approach, the quadrature phases make their presence felt through the multiphase 
evolution which is heterogeneous in the sense that photons of different streams are 
correlated through the non-Markov evolution of the immigration (spontaneous 
emission) process; squeezing in the present case makes itself manifest by antibunching 
in one stream and bunching in another stream. The phenomenon of antibunching was 
earlier [8] shown to be a consequence of the special type of population evolution; the 
results presented above go to demonstrate squeezing, although there are limits to the 
amount of squeezing which actually depends on the number of phases. Since the 
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number of phases can in principle be arbitrary, the amount of squeezing can also be 
arbitrary. If we choose K = 3/4, L = 1,  we find A,, (W) = Ai2(m) = 2/3, 8,, = 16/19 and 
B22 = 28/19, establishing antibunching for one of the streams when the mean number 
is sizeable. Thus we can conclude that a special model of multiphase evolution produces 
a stream of photons that corresponds to squeezed coherent light. 

Returning to the general setting A # 0, we note that the resulting radiation can be 
rendered thermal to at least second-order statistics [ 5 ]  for v, = 0 and L = N 2 / ( K  +2n).  
If on the other hand v2 = 0, the resulting radiation still yields bunched statistics. The 
general case when neither v, nor v2 vanishes can be handled with the help of the 
formulae (16)-( 18); the bunching ratios are given by 

9311 = ( L + l ) / ( K + L +  1 ) +  N2(1+ I / L ) / ( K + 2 N )  ( A  = NP,) 
(20) 

Since the total population of photons in this case generates a thermal stream, we 
can conclude that antibunching in one stream and bunching in the residual stream 
corresponds to the characteristics of thermally squeezed light. 

We finally take the case m = 3; if we choose P I  = pz,  v, = L p ,  , v2 = M p ,  , v3 = J p ,  , 
A =0 ,  we find 

8 2 2  = ( K  + 1)(L+ 1)/(K + L +  1 )  + N 2 (  1 + 1/L)/[ M ( K  +2N)] .  

81, = (2L+ M + l ) / [  L +  ( K  + 1) (  K + L+ M + l ) ]  

822=93 , , (K+1)  9 3 3  = 93,,(K + 1 ) 2 .  

We can maintain a hierarchy [lo] by adding the photons of indices 1 and 2 and 
denoting the bunching ratio by BI2, we find 

8 1 2  = 8, I[ 1 + K M /  ( L  + M)]. (22) 

For K = L = M = 1,  we have 8,, = 4/9, B12 = 2/3, 8R22 = 8/9, 833 = 16/9, providing 
ample evidence for bimodal squeezing. It can be verified that the total population is 
Poisson to second-order statistics provided we choose J = 6/7. The value of J should 
not cause any surprise if we make note of the fact that in a two-stream population 
(m = 2), the corresponding parameter had a value 1 and hence a lower value of J is 
necessary to offset the reduction in the fluctuation of photons of streams 1 and 2. Full 
details relating to the structure of the various formulae and proof of statements as well 
as the Poisson nature of the total population for the two-stream case will be presented 
elsewhere. 
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